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Abstract
We consider the six-vertex model on a 2N × N lattice with domain wall
boundary conditions for the lower, upper and right boundaries and a reflecting
end for the left boundary. The boundary one-point correlation functions, which
describe the boundary spontaneous polarization, are calculated and expressed
as some determinants of N × N matrices.

PACS numbers: 02.30.Ik, 05.50.+q

1. Introduction

The six-vertex model is an important model of statistical mechanics in two-dimensional space.
It was first introduced in [1] as an ice model, and was solved exactly [2, 3]. Later, the six-
vertex model was studied extensively not only with periodic boundary conditions, but also with
different boundary conditions: for example, the domain wall boundary [4] and the reflecting
boundary [5]. With these different boundary conditions, the six-vertex model was proved to
be solved exactly, and its partition functions allow us to derive determinant representations
[6–8]. Its boundary polarization correlation functions were also solved exactly [9–11]. In this
paper, we discuss the six-vertex model with reflecting boundary conditions. We calculate four
types of correlation functions, which are related to the boundary polarization, and we derive
the determinant representations for these correlation functions.

2. Six-vertex model with a reflecting boundary condition

In this section, we introduce the model and some notations. We discuss a 2N × N lattice as
shown in figure 1(a).

There are three convenient ways to describe the six-vertex model, which are in terms
of arrows, lines and spins [9]. In this paper, the spin description is adopted. The boundary
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(a) (b)

Figure 1. A six-vertex model with reflecting boundary, in terms of arrows.

conditions are the domain wall boundary for the lower, upper and right boundaries and a
reflecting end for the left boundary. The reflecting matrices on the left boundary are

K̃+(λα) =
(

0 cosh
(
λα + 1

2η − iπ
2 + ζ+

)
cosh

(−λα − 1
2η + iπ

2 + ζ+
)

0

)
where ζ+ is a boundary parameter. Vertical lines are enumerated by Latin indices (k =
1, . . . , N) while horizontal lines are labelled with Greek indices α = 1, . . . , 2N). Each spin
variable is situated on a lattice edge and takes two different values, ↑ or ↓. In the framework
of the Bethe ansatz algebra, the statistical weight Lαk associated with the intersection of the
αth row and kth column is defined as

Lαk (λα, νk) = Lαk (λα − νk) =




sinh
(
λα − νk + 1

2ησ 3
k

)
sinh

(
λα − νk + 1

2η
) sinh(η)σ−

k

sinh
(
λα − νk + 1

2η
)

sinh(η)σ +
k

sinh
(
λα − νk + 1

2η
) sinh

(
λα − νk − 1

2ησ 3
k

)
sinh

(
λα − νk + 1

2η
)




[α]

.

(1)

σ
1,2,3
k are Pauli matrices acting on the kth column, σ±

k = 1
2

(
σ 1

k ± iσ 2
k

)
. To

calculate the partition function, we consider the (2α − 1) and (2α) columns first,
↓2α T tM (λM) K̃+ (λM) T (−λM) ↓2α−1, where T (λα) = LαN (λα, νN) · · · Lα1 (λα, ν1). The
effect of these two columns is equal to

↓2α UtM (λM) ↑2α−1 = B(λα).

U(λM) is the two-row monodromy matrix in the Bethe ansatz algebra [5] as shown in
figure 1(b),

Utα (λα) = T tα (λα)K+(λα)σ 2
αT (−λα)σ 2

α =
(
A(λα) C(λα)

B(λα) D(λα)

)
(2)

K+(λα) = K̃+(λα)σ 2
α =

(
sinh

(
λα + 1

2η + ζ+
)

0
0 sinh

(−λα − 1
2η + ζ+

) ) .

Then the partition function is equal to

ZN({λα}N, {νk}N) = w−
N

N∏
α=1

B (λα)w+
N .
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w±
N are pseudo-vacuum, w+

N = ∏N
i=1 ↑i , w−

N = ∏N
i=1 ↓i . The monodromy matrices defined

in equation (2) satisfy the boundary Yang–Baxter relation:

R12(−λ1 + λ2)U
t1(λ1)R12(−λ1 − λ2 − η)Ut2(λ2)

= Ut2(λ2)R12(−λ1 − λ2 − η)Ut1(λ1)R12(−λ1 + λ2). (3)

R12 is the trigonometric solution of the Yang–Baxter equation:

R12(λ) =




sinh(λ + η)

sinh(λ) sinh(η)

sinh(η) sinh(λ)

sinh(λ + η)




[12]

.

From equation (3), the commutation relations between A(λα),B(λα), C(λα) and D(λα) can
be obtained. Some of these relations are

A(λα)B(λβ) = sinh2(λα − η) − sinh2 λβ

sinh2 λα − sinh2 λβ

B(λβ)A(λα) +
sinh η sinh(λα + λβ − η)

sinh2 λα − sinh2 λβ

B(λα)A(λβ)

− sinh(2η) sinh(η)

sinh2 λα − sinh2 λβ

B(λβ )D(λα) +
sinh η sinh(2η − λα + λβ)

sinh2 λα − sinh2 λβ

B(λα)D(λβ)

D(λα)B(λβ) = sinh2(λα + η) − sinh2 λβ

sinh2 λα − sinh2 λβ

B(λβ)D(λα)

− sinh η sinh(λα + λβ + η)

sinh2 λα − sinh2 λβ

B(λα)D(λβ) +
sinh η

sinh(λα + λβ)
B(λα)A(λβ)

(4)

B(λα)B(λβ) = B(λβ)B(λα). (5)

The eigenvalues of A(λα) and D(λα) when they act on w+
N are

A(λα)w
+
N = 	N

+ (λα)w+
N D(λα)w+

N = 	N
−(λα)w+

N

	N
+ (λα) = − sinh(2λα + η)

sinh(2λα)
δN(−λα) +

sinh η

sinh(2λα)
δN(λα)

	N
−(λα) = −δN(λα)

δN(λα) = sinh

(
λα +

1

2
η − ζ+

) N∏
i=1

sinh
(
λα − νi − 1

2η
)

sinh
(
λα − νi + 1

2η
) .

Now we define the following one-point correlation functions:

f M
1 = Z−1

N w−
N

[
N∏

α=M+1

B(λα)

][
sinh

(
λM +

1

2
η + ζ+

)
q1B(λM)p1D(−λM)

+ sinh

(
λM +

1

2
η − ζ+

)
q1D(λM)p1B(−λM)

][M−1∏
α=1

B(λα)

]
w+

N

f M
2 = Z−1

N w−
N

[
N∏

α=M+1

B(λα)

][
sinh

(
λM +

1

2
η + ζ+

)
B(λM)q1D(−λM)p1

+ sinh

(
λM +

1

2
η − ζ+

)
D(λM)q1B(−λM)p1

][M−1∏
α=1

B(λα)

]
w+

N (6)

f M
3 = Z−1

N w−
N

[
N∏

α=M+1

B(λα)

]
q1

[
M∏

α=1

B(λα)

]
w+

N
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f M
4 = Z−1

N w−
N

[
N∏

α=M+1

B(λα)

][
sinh

(
λM +

1

2
η + ζ+

)
B(λM)q1D(−λM)

+ sinh

(
λM +

1

2
η − ζ+

)
D(λM)q1B(−λM)

][M−1∏
α=1

B(λα)

]
w+

N .

Here q1 = 1
2

(
1 − σ 3

1

)
, and p1 = 1

2

(
1 + σ 3

1

)
. f M

1 and f M
2 describe the probability that the spin

on the first column is turned down just on the 2Mth and (2M − 1)th rows, respectively. Also,
f M

3 and f M
4 describe the probability that the spin on the first column is turned down before

the 2Mth and (2M − 1)th rows, respectively.

3. Determinant representations

To derive the reduction formulae for the correlation functions, we can decompose the bulk
monodromy matrix T (λα) into the matrix product of two monodromy matrices in the αth row:

T (λα) = T̂ α(λα)Lα1(λα, ν1) T̂ α(λα) = LαN(λα, νN) · · · Lα2(λα, ν1). (7)

Utilizing the expression of Lα1(λα − ν1)(1), f M
1 can be written as

f M
1 = −sinh η

sinh
(
ν1 + 1

2η − λM

) M∏
α=1

[
sinh2

(
ν1 + 1

2η
)− sinh2 λα

]
[
sinh2

(
ν1 − 1

2η
)− sinh2 λα

]

× Z−1
N w−

N−1


 N∏

γ=M+1

B̂(λγ )


 D̂(λM)


M−1∏

γ=1

B̂(λγ )


w+

N−1 (8)

where w+
N−1 = ∏N

i=2 ↑i . B̂(λγ ) and D̂(λγ ) are the operators acting on columns from 2 to N
and are defined as

Û tα (λα) = T̂ tα (λα)K+(λα)σ 2
α T̂ (−λα) σ 2

α =
(
Â(λα) Ĉ(λα)

B̂(λα) D̂(λα)

)
[α]

.

The commutation relations between Â, B̂, Ĉ and D̂ are similar to those betweenA(λα),B (λα) ,

C(λα) and D(λα). Applying these commutation relations (4) repeatedly, we have

Â(λα)


α−1∏

β=1

B̂(λβ)


w+

N−1

=
α∑

β=1

∏N
i=2

[
sinh2

(
νi + 1

2η
)− sinh2 λβ

]
∏α

γ=1,�=β(sinh2 λβ − sinh2 λγ )
a

(α)
β


 α∏

γ=1,�=β

B̂(λγ )


w+

N−1

(9)

D̂(λα)


α−1∏

β=1

B̂(λβ)


w+

N−1

=
α∑

β=1

∏N
i=2

[
sinh2

(
νi + 1

2η
)− sinh2 λβ

]
∏α

γ=1,�=β(sinh2 λβ − sinh2 λγ )
d

(α)
β


 α∏

γ=1,�=β

B̂(λγ )


w+

N−1.
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a
(α)
β and d

(α)
β are functions depending on parameters α and β,

a
(α)
β = sinh(η) sinh(2λα) sinh(η + 2λβ)

sinh(2λβ)

[
sinh(η + λβ − λα)�

(α)
β (λβ)

− sinh(η − λβ − λα)�
(α)
β (−λβ)

]
d

(α)
β = − sinh(η) sinh(η + 2λβ)

sinh(2λβ)

[
sinh(λα + λβ)�

(α)
β (λβ) − sinh(λα − λβ)�

(α)
β (−λβ)

]

�
(α)
β (λβ) = sinh

(
λβ +

1

2
η − ζ+

) ∏α−1
γ=1[sinh2(λβ + η) − sinh2 λγ ]∏N

i=2

[
sinh2 νi − sinh2

(
1
2η + λβ

)] .
Using equation (9), equation (8) can be written as

f M
1 = −sinh η

sinh
(
ν1 + 1

2η − λM

) M∏
γ=1

[
sinh2

(
ν1 + 1

2η
)− sinh2 λγ

]
[
sinh2

(
ν1 − 1

2η
)− sinh2 λγ

]
×

M∑
α=1

∏N
i=2

[
sinh2

(
νi + 1

2η
)− sinh2 λα

]
∏M

γ=1,�=α(sinh2 λα − sinh2 λγ )
a(M)

α

ZN−1({λβ}β �=α, {νk}k �=1)

ZN({λβ}N, {νk}N)
.

(10)

As in the case of the periodic boundary condition, the partition function ZN({λβ}N, {νk}N) in
the case of the reflecting boundary condition may also be expressed as a determinant of the
usual functions of the spectrum parameters {λα}N and {νk}N [8]

ZN ({λα}N, {νk}N) =
∏N

α=1

∏N
i=1

[
sinh2

(
νi + 1

2η
)− sinh2 λα

]
∏

1�i<j�N(sinh2 νj − sinh2 νi)
∏

1�α<β�N(sinh2 λα − sinh2 λβ)

× detN X ({λα}N, {νk}N)
(11)

Xαi = −sinh η sinh (2λα + η) sinh (νi + ζ+)[
sinh2

(
νi + 1

2η
)− sinh2 λα

] [
sinh2

(
νi − 1

2η
)− sinh2 λα

] .
Substituting equation (11) into equation (10) and taking into account that

∏N
γ=M+1(sinh2 λα −

sinh2 λγ ) = 0 when α > M,f M
1 can be written as

f M
1 = − sinh η sinh

(
ν1 + 1

2η + λM

)∏N
i=2(sinh2 νi − sinh2 ν1)∏M

γ=1

[
sinh2

(
ν1 − 1

2η
)− sinh2 λγ

]∏N
γ=M

[
sinh2

(
ν1 + 1

2η
)− sinh2 λγ

]
× detN HM

1 ({λβ}β �=α, {νk}k �=1)

detN X ({λα}N, {νk}N)
(12){(

HM
1

)
αi

= Xαi 2 � i � N(
HM

1

)
α1 = a(M)

α

∏N
γ=M+1(sinh2 λα − sinh2 λγ ).

Similar to the calculation of f M
1 , f M

2 allows us to express the following determinants:

f M
2 = −sinh η sinh

(
ν1 − 1

2η − λM

)∏N
i=2(sinh2 νi − sinh2 ν1)∏M

γ=1

[
sinh2

(
ν1 − 1

2η
)− sinh2 λγ

]∏N
γ=M

[
sinh2

(
ν1 + 1

2η
)− sinh2 λγ

]
× detN HM

2 ({λβ}β �=α, {νk}k �=1)

detN X ({λα}N, {νk}N)
(13){(

HM
2

)
αi

= Xαi 2 � i � N(
HM

2

)
α1 = d(M)

α

∏N
γ=M+1(sinh2 λα − sinh2 λγ ).
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Now we consider functions f M
3 and f M

4 . First, applying equation (7) to equation (6), we
can express f M

3 as

f M
3 = Z−1

N

M∑
α=1

−sinh η
∏α−1

β=1

[
sinh2

(
ν1 + 1

2η
)− sinh2 λβ

]
∏α

β=1

[
sinh2

(
ν1 − 1

2η
)− sinh2 λβ

] w−
N−1

×

 N∏

γ=α+1

B̂
(
λγ

){[sinh

(
ν1 +

1

2
η + λα

)
Â(λα)

+ sinh

(
ν1 − 1

2
η − λα

)
D̂(λα)

]}α−1∏
γ=1

B̂(λγ )


w+

N−1.

Secondly, picking the term α = M in the sum and utilizing the relations (9), we have

f M
3 = −sinh η


 M∏

β=1

sinh2
(
ν1 + 1

2η
)− sinh2 λ

sinh2
(
ν1 − 1

2η
)− sinh2 λβ


 ∏N

i=2

[
sinh2

(
νi + 1

2η
)− sinh2 λM

]
∏M−1

γ=1 (sinh2 λM − sinh2 λγ )

×
[

a
(M)

M

sinh
(
ν1 + 1

2η − λM

) +
sinh

(
ν1 − 1

2η − λM

)
d

(M)
M

sinh2
(
ν1 + 1

2η
)− sinh2 λM

]

× ZN−1({λβ}β �=M, {νk}k �=1)

ZN({λβ}N, {νk}N)
+ · · · . (14)

The other terms in equation (14) are terms with scalar products involving the operators B̂(λM).
Because B(λα) commutate each other, M spectrum parameters λ1, . . . , λM are completely
symmetric in f M

3 . It follows that the whole expression in equation (14) is the sum over the
cyclic permutations of the elements in the set {λ1 · · · λM }M ,

f M
3 = − sinh η


 M∏

β=1

sinh2
(
ν1 + 1

2η
)− sinh2 λβ

sinh2
(
ν1 − 1

2η
)− sinh2 λβ


 M∑

α=1

∏N
i=2

[
sinh2

(
νi + 1

2η
)− sinh2 λα

]
∏M

γ=1,�=α(sinh2 λα − sinh2 λγ )

×
[

a(M)
α

sinh
(
ν1 + 1

2η − λα

) +
sinh

(
ν1 − 1

2η − λM

)
d(M)

α

sinh2
(
ν1 + 1

2η
)− sinh2 λα

]
ZN−1({λβ}β �=α, {νk}k �=1)

ZN({λβ}N, {νk}N)
.

This reduction formula for f M
3 is similar to that for f M

1 (equation (10)), so we can express
f M

3 as

f M
3 = −sinh η

∏N
i=2(sinh2 νi − sinh2 ν1)∏M

γ=1

[
sinh2

(
ν1 − 1

2η
)− sinh2 λγ

]∏N
γ=M+1

[
sinh2

(
ν1 + 1

2 η
)− sinh2 λγ

]
× detN HM

3 ({λβ}β �=α, {νk}k �=1)

detN X ({λα}N, {νk}N)
(15)




(
HM

3

)
αi

= Xαi 2 � i � N(
HM

3

)
α1 =

[
a(M)

α

sinh
(
ν1 + 1

2η − λα

) +
sinh

(
ν1 − 1

2η − λM

)
d(M)

α

sinh2
(
ν1 + 1

2η
)− sinh2 λα

]

×∏N
γ=M+1(sinh2 λα − sinh2 λγ ).

Because of 1 = q1 + p1, f
M

4 can be expressed through f α
2 and f α

3 as

f M
4 = f M−1

3 + f M
2 .
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From equations (13) and (15) and the sum formulae of two determinants, we obtain

f M
4 = −sinh η sinh

(
ν1 − 1

2η − λM

)∏N
i=2(sinh2 νi − sinh2 ν1)∏M

γ=1

[
sinh2

(
ν1 − 1

2η
)− sinh2 λγ

]∏N
γ=M

[
sinh2

(
ν1 + 1

2η
)− sinh2 λγ

]
× detN HM

4 ({λβ}β �=α, {νk}k �=1)

detN X ({λα}N, {νk}N)
(16)




(
HM

4

)
αi

= Xαi 2 � i � N(
HM

4

)
α1 = d(M)

α

∏N
γ=M+1(sinh2 λα − sinh2 λγ ) + sinh

(
ν1 − 1

2η + λM

)
×
[

a(M−1)
α

sinh
(
ν1 + 1

2η − λα

) +
sinh

(
ν1 − 1

2η − λM

)
d(M−1)

α

sinh2
(
ν1 + 1

2η
)− sinh2 λα

]

×∏N
γ=M(sinh2 λα − sinh2 λγ ).

4. Discussion

The calculations of the partition functions and the correlation functions are two main problems
in exactly solved statistical mechanics. In this paper, we have calculated four types of
correlation functions which are related to the boundary spontaneous polarization for the
six-vertex model with a reflecting boundary condition. These results allow determinant
representations and generalize the known result for the partition function. Because of the
existence of the reflecting boundary, it is difficult to calculate the spontaneous polarization
at an arbitrary point of the lattice. So it is interesting to investigate a new approach for the
calculation of arbitrary correlation functions.
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